Хромосомы в интерфазном ядре

Хромосомы в интерфазном ядре

В интерфазе хромосомы практически не видны.

Главная функция хромосом – хранение и передача наследственной информации, носителем которой является молекула ДНК. В интерфазе происходит удвоение ДНК, после которого каждая хромосома будет состоять из двух идентичных половинок – хроматид.

Хроматин – основное вещество ядра животной и растительной клетки, способное окрашиваться.

1. эухроматин – участки хромосом, сохраняющие деспирализованное состояние в покоящемся ядре и спирализующиеся при делении клеток;

2. гетерохроматин – участки хроматина, находящиеся в конденсированном (плотно упакованном) состоянии в течение всего клеточного цикла;

3. половой хроматин.

Половой хроматин – особые хроматиновые тельца клеточных ядер особей женского пола у человека и других млекопитающих. Располагаются у ядерной оболочки, на препаратах имеют обычно треугольную или овальную форму; размер 0,7—1,2 мк. Половой хроматин образован одной из Х-хромосом женского кариотипа и может быть выявлен в любой ткани человека (в клетках слизистых оболочек, кожи, крови, биопсированной ткани). Наиболее простым исследованием полового хроматина является исследование его в клетках эпителия слизистой оболочки полости рта.

5. Метафазная хромосома. Вступление клетки из интерфазы в митоз сопровождается суперкомпактизацией хроматина. Отдельные хромосомы становятся хорошо различимы. Этот процесс начинается в профазе, достигая своего максимального выражения в метафазе митоза и анафазе. В телофазе митоза происходит декомпактизация вещества хромосом, которое приобретает структуру интерфазного хроматина. Описанная митотическая суперкомпактизация облегчает распределение хромосом к полюсам митотического веретена в анафазе митоза.

Хромосомы типа ламповых щеток.Хромосомы типа ламповых щеток появляются во время диплонемы мейоза при образовании половых клеток у большинства позвоночных, беспозвоночных и зеленых водорослей. Содержание ДНК в таких хромосомах соответствует норме, они не политенны (каждая хромосома содержит две молекулы ДНК).В хромосомах типа ламповых щеток, помимо петлеобразной укладки суперспирали в виде ерша, имеются отдельные значительно вытянутые сим­метричные петли, выступающие над поверхностью основной структуры хро­мосомной укладки. Обычно во время клеточного деления РНК не синтезируется, а хромосомы типа ламповых щеток, по-видимому, создают запас РНК для последующих стадий развития. Наблюдаемые структуры типа ламповых щеток представляют собой транскрипционно активный хроматин и не являются типичными для соматических клеток.

Политенные хромосомы (гигантские хромосомы) содержат во много раз больше ДНК, чем обычные. Они не изменяют своей формы на протяжении всего митотического цикла и достигают длины до 0,5 мм, а толщины до 25 мкм. Они встречаются, например, в слюнных железах двукрылых (мух, комаров), в макронуклеусе инфузории и в тканях завязи бобов. Чаще всего они видны в гап­лоидном числе, т.к. гомологичные хромосомы бывают тесно спарены. Клетки с такими хромосомами вырастают до необычно большого размера.Возникают политенные хромосомы вследствие многократно повторяющегося процесса редупликации ДНК. При этом разные участки ДНК редуплицируются в разной степени. Большинство генетически информативных областей реплицируются 1000 раз, а некоторые — более чем 30 тыс. раз. При этом циклы редупликации ДНК не сопровождаются делением клетки. По существу, политенные хромосомы представляют собой пучки множества неполностью разделенных, тесно прилежащих друг к другу индивидуальных хроматиновых нитей.

6. ХРОМОСО́МНЫЙ НАБО́Р, совокупность хромосом, заключенных в каждой клетке организма. В половых клетках диплоидных видов содержится гаплоидный (одинарный) хромосомный набор, в котором хромосома каждого типа встречается только один раз; в большинстве соматических клеток большинства видов — диплоидный (двойной), в котором имеются всегда по две хромосомы каждого типа (парные, или гомологичные, хромосомы, происходящие одна от материнского организма, а другая от отцовского). Каждый вид организмов обладает характерным и постоянным хромосомным набором. Правила хромосом:

1. правило постоянства числа хромосом- соматические клетки организма имеют строго определенное число хромосом (у человека 46)

2.парность хромосом- каждая хромосома в соматической клетке с диплоидным набором имеет такую же гомологичную хромосому идентичную по размеру, форме, но неодинаковы по происхождению.

3.правило индивидуальности хромосом- каждая пара хромосом отличается от другой пары размером, формой, чередованием светлых и темных полосок.

4. правило непрерывности хромосом- перед делением все клетки ДНК удваиваются и в результате получается 2 сестринские хроматиды.

7.Кариотип человека-полный(диплоидный) систематизированный набор хромосом.Кариограмма— это те же хромосомы метафазной пластинки, но расположенные упорядоченно. Принцип упорядоченности общий для всего вида и определяется идеограммой. Идиограмма — это графическое изображение гаплоидного набора хромосом (можно и диплоидного) и расположение их по группам в зависимости от формы и величины. Группы располагаются в порядке уменьшения величины входящих в них хромосом.

Кариотипирование- метод изучения метафазных хромосом.

1. Берется кровь.

2. Ацентрифугирование(используется лейкоциты)

3. Добавляется питательная смесь(лимфоциты)

4. Добавляется питательная среда (фитогем агглютинин)

5. Клетки культивируются при t=37 градусов в термостате

6. Добавляется колхицин, который останавливает процесс деление клетки на метафазе

7. Хромосомы окрашивают и микроскопируют

8. Добавляется гипотонический раствор, чтобы клетка лопнулась

8.Первая классификация хромосом была принята в 1960 г. На Денверской конференции. Окрашивание хромосом рутинным методом- сплошное окрашивание. Окрашенные таким образом хромосомы, согласно Денверской классификации (I960), располагались в идиограмме в зависимости от их длины и нумеровались по парам от 1 до 23. Выделяют 7 групп от A до G с учетом расположения центромеры. При этой классификации учитывается: размер, форма, центромерный индекс (отношение длины короткого плеча к длине всей хромосомы). Недостаток Денверской классификации: при рутинном окрашивании невозможно идентифицировать каждую хромосомы. В 1971 г. Была принята Парижская классификация. При этом хромосомы окрашиваются люминесцентным красителем- акрихин ипритом, по методу Касперского(дифференцированное окрашивание). Это позволяет каждую хромосому идентифицировать. информация, полученная в результате анализа дифференциально окрашенных хромосом, позволяет представить идиограмму хромосом человека следующим образом:

Читайте также:  Исследование крови на гельминты

Группа А, 1-3 хромосомы — большие метацентрические и субметацентрические хромосомы;

Группа В, 4 и 5 хромосомы — большие субметацентрические

Группа С, 6-12 хромосомы и Х-хромосома — средние Субметацентрические хромосомы

Группа D, 13-15 хромосомы — акроцентрические,

Группа Е, 16-18 хромосомы — относительно короткие метацентрические и субметацентрические;

Группа F, 19, 20 хромосомы — мелкие метацентрические,

Группа G, 21, 22, Y-хромосомы — мелкие акроцентрические,

Интерфазная хромосома — это раскрученная двойная нить ДНК, в таком состоянии с нее считывается информация, необходимая для жизнедеятельности клетки. То есть функция интерфазной ХР — передача информации с генома, последовательности нуклеотидов в молекуле ДНК, для синтеза необходимых белков, ферментов и т. д.
Когда приходит время деления клетки необходимо сохранить всю имеющуюся информацию и передать ее в дочерние клетки. В состоянии «раздрая» ХР этого сделать не может . Поэтому хромосоме приходится структурироваться — скручивать нить своей ДНК в компактную структуру. ДНК к этому времени уже удвоена и каждая нить скручивается в свою хроматиду. 2 хроматиды образуют хромосому. В профазе под микроскопом в ядре клетки становятся заметны маленькие рыхлые комочки — это будущие ХР. Они постепенно укрупняются и формируют видимые хромосомы, которые к середине метафазы выстраиваются по экватору клетки. В норме в телофазе равное количество хромосом начинает двигаться к полюсам клетки. (я не повторяю 1-го ответа, там все правильно. Суммируйте информацию) .
Однако случается иногда, что хроматиды цепляются друг за друга, переплетаются, кусочки отрываются — а результате две дочерние клетки получают немного неравную информацию. Такая штука называется патологический митоз. После него дочерние клетки будуи работать неправильно. При сильном повреждении хромосом клетка погибнет, при более слабом не сможет разделиться еще раз или даст череду неправильных делений. Такие вещи приводят к возникновению заболеваний, от нарушений биохимической реакции в отдельной клетке, до заболевания раком какого-то органа. Клетки делятся во всех органах, но с разной интенсивностью, поэтому у разных органов — разная вероятность заболеть раком. К счастью такие патологические митозы бывают не слишком часто и природа придумала механизмы избавления от получившихся неправильных клеток. Только когда среда обитания организма очень плохая (повышен радиоактивный фон, сильные загрязнения воды, воздуха вредными хим. веществами, бесконтрольное применение лекарственных препаратов и т. п. ) -природный защитный механизм не справляется. В таком случае вероятность появления заболеваний увеличивается. Нужно стараться свести вредные факторы воздействия на организм к минимуму и принимать биопротекторы в виде живой пищи, свежего воздуха, витаминов и веществ необходимых в данной местности, это может быть иод, селен, магний или что-то еще. Не игнорируйте заботу о своем здоровье.

Хроматин (греч. χρώματα — цвета, краски) — это вещество хромосом — комплекс ДНК, РНК и белков. Хроматин находится внутри ядра клеток эукариот и входит в состав нуклеоида у прокариот. Именно в составе хроматина происходит реализация генетической информации, а также репликация и репарация ДНК

Различают два вида хроматина:
1) эухроматин, локализующийся ближе к центру ядра, более светлый, более деспирилизованный, менее компакт-ный, более активен в функциональном отношении. Предполагается, что в нем сосредоточена та ДНК, которая в интерфазе генетически активна. Эухроматин соответствует сегментам хромосом, которые деспирализованы и от-крыты для транскрипции. Эти сегменты не окрашиваются и не видны в световой микроскоп.
2) гетерохроматин — плотно спирализованная часть хроматина. Гетерохроматин соответствует конденсированным, плотно скрученным сегментам хромосом (что делает их недоступными для транскрипции) . Он интенсивно окра-шивается основными красителями, и в световом микроскопе имеет вид тёмных пятен, гранул. Гетерохроматин располагается ближе к оболочке ядра, более компактен, чем эухроматин и содержит “молчащие” гены, т. е. гены, которые в настоящий момент неактивны. Различают конститутивный и факультативный гетерохроматин. Консти-тутивный гетерохроматин никогда не переходит в эухроматин и является гетерохроматином во всех типах клеток. Факультативный гетерохроматин может превращаться в эухоматин в некоторых клетках или на разных стадиях онтогенеза организма. Примером скопления факультативного гетерохроматина является тельце Барра – инактиви-рованная Х-хромосома у самок млекопитающих, которая в интерфазе плотно скручена и неактивна. В большинст-ве клеток оно лежит у кариолеммы.

Половой хроматин — особые хроматиновые тельца клеточных ядер особей женского пола у человека и других млекопитающих. Располагаются у ядерной оболочки, на препаратах имеют обычно треугольную или овальную форму; размер 0,7—1,2 мк (рис. 1). Половой хроматин образован одной из Х-хромосом женского кариотипа и может быть выявлен в любой ткани человека (в клетках слизистых оболочек, кожи, крови, биопсированной ткани), Наиболее простым исследованием полового хроматина является исследование его в клетках эпителия слизистой оболочки полости рта. Взятый шпателем соскоб со слизистой оболочки щеки помещают на предметное стекло, окрашивают ацетоорсеином и анализируют под микроскопом 100 светлоокрашенных клеточных ядер, подсчитывая, сколько из них содержат половой хроматин. В норме он встречается в среднем в 30—40% ядер у женщин и не обнаруживается у мужчин

Читайте также:  Признаки привязанности к человеку

15.Особенности строения метафазных хромосом. Типы хромосом. Хромосомный набор. Правила хромосом.

Метафазная хромосома состоит из двух соединенных центромерой сестринских хроматид, каждая из которых содержит одну молекулу ДНП, уложенную в виде суперспирали. При спирализа-ции участки эу- и гетерохроматина укладываются закономерным образом, так что на протяжении хроматид образуются чередующиеся поперечные полосы. Их выявляют при помощи специальных окрасок. Поверхность хромосом покрыта различными молекулами, главным образом, рибонуклеопротеинами (РНП). В соматических клетках имеются по две копии каждой хромосомы, их называют гомологичными. Они одинаковы по длине, форме, строению, расположению полос, несут одни и те же гены, которые локализованы одинаково. Гомологичные хромосомы могут различаться аллелями генов, содержащихся в них. Ген — это участок молекулы ДНК, на котором синтезируется активная молекула РНК. Гены, входящие в состав хромосом человека, могут содержать до двух млн пар нуклеотидов.

Деспирализованные активные участки хромосом не видны под микроскопом. Лишь слабая гомогенная базофилия нуклеоплазмы указывает на присутствие ДНК; их можно выявить также гистохимическими методами. Такие участки относят к эухроматину. Неактивные сильно спирализованные комплексы ДНК и высокомолекулярных белков выделяются при окрасках в виде глыбок гетерохроматина. Хромосомы фиксированы на внутренней поверхности кариотеки к ядерной ламине.

Хромосомы в функционирующей клетке обеспечивают синтез РНК, необходимых для последующего синтеза белков. При этом осуществляется считывание генетической информации — ее транскрипция. Не вся хромосома принимает в ней непосредственное участие.

Разные участки хромосом обеспечивают синтез различных РНК. Особенно выделяются участки, синтезирующие рибосомные РНК (рРНК); ими обладают не все хромосомы. Эти участки называют ядрышковыми организаторами. Ядрышковые организаторы образуют петли. Верхушки петель разных хромосом тяготеют друг к другу и встречаются вместе. Таким образом формируется структура ядра, именуемая ядрышком (рис. 20). В нем различают три компонента: слабоокрашенный компонент соответствует петлям хромосом, фибриллярный — транскрибированной рРНК и глобулярный — предшественникам рибосом.

Хромосомы являются ведущими компонентами клетки, регулирующими все обменные процессы: любые метаболические реакции возможны только с участием ферментов, ферменты же всегда белки, белки синтезируются только с участием РНК.

Вместе с тем хромосомы являются и хранителями наследственных свойств организма. Именно последовательность нуклеоти-дов в цепях ДНК определяет генетический код.

Расположение центромеры определяет три основных типа хромосом:

1) равноплечие – с плечами равной или почти равной длины;

2) неравноплечие, имеющие плечи неравной длины;

3) палочковидные – с одним длинным и вторым очень коротким, иногда с трудом обнаруживаемым плечом. хромосомный набор-Кариоти́п — совокупность признаков полного набора хромосом, присущая клеткам данного биологического вида, данного организма или линии клеток. Кариотипом иногда также называют и визуальное представление полного хромосомного набора. Термин «кариотип» был введён в 1924 году советским цитологом

1. Постоянство числа хромосом.

Соматические клетки организма каждого вида имеют строго определенное число хромосом (у человека -46, у кошки- 38, У мушки дрозофилы — 8, у собаки -78. у курицы -78).

2. Парность хромосом.

Каждая. хромосома в соматических клетках с диплоидным набором имеет такую же гомологичную (одинаковую) хромосому, идентичную по размерам, форме, но неодинаковую по происхождению: одну — от отца, другую — от матери.

3. Правило индивидуальности хромосом.

Каждая пара хромосом отличается от другой пары размерами, формой, чередованием светлых и темных полос.

4. Правило непрерывности.

Перед делением клетки ДНК удваивается и в результате получается 2 сестринские хроматиды. После деления в дочерние клетки попадает по одной хроматиде, таким о6разом, хромосомы непепрывны: от хромосомы образуется хромосома.

16.Кариотип человека. Его определение. Кариограмма, принцип составления. Идиограмма, ее содержание.

Кариотип.(от карио . и греч. typos — отпечаток, форма),ттипичная для вида совокупность морфологических признаков хромосом (размер, форма, детали строения, число и т. д.). Важная генетическая характеристика вида, лежащая в основе кариосистематики. Для определения кариотипа используют микрофотографию или зарисовку хромосом при микроскопии делящихся клеток.У каждого человека 46 хромосом, две из которых половые. У женщины это две X хромосомы (кариотип: 46, ХХ), а у мужчин одна Х хромосома, а другая – Y (кариотип: 46, ХY). Исследование кариотипа проводится с помощью метода, называемого цитогенетика.

Идиограмма (от греч . idios — свой, своеобразный и . грамма), схематическое изображение гаплоидного набора хромосом организма, которые располагают в ряд в соответствии с их размерами.

Читайте также:  Горючая сера применение в народной медицине

Кариограмма (от карио. и. грамма),графическое изображение кариотипа для количественной характеристики каждой хромосомы. Один из типов К. — идиограмма -схематическая зарисовка хромосом, расположенных в ряд по их длине (рис.). Др. тип К. — график, на котором координатами служат какие-либо значения длины хромосомы или её части и всего кариотипа (например, относительная длина хромосом) и так называемый центромерный индекс, т. е. отношение длины короткого плеча к длине всей хромосомы. Расположение каждой точки на К. отражает распределение хромосом в кариотипе. Основная задача кариограммного анализа -выявление гетерогенности (различий) внешне сходных хромосом в той или иной их группе.

Дата добавления: 2016-06-18 ; просмотров: 9268 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Информация

Интерфазное ядро

В интерфазном ядре после деконденсации хромосомы обычно уже не удается наблюдать как компактные структурные единицы. Однако были найдены объекты (половые хромосомы) и методы (флуоресцентный, авторадиографический и др.), позволяющие проводить наблюдения за хромосомами или за их специфическими участками и в неделящемся ядре. Хромосомы сохраняют свою химическую структуру и генетическую индивидуальность в течение всего жизненного цикла клетки, происходит лишь смена двух их физиологических форм: транспортной (во время деления ядра) и функциональной (в промежутках между делениями).[ . ]

Еще в 1928 г. Хейтц обнаружил, что в интерфазном ядре различные участки хромосом неоднородно окрашиваются основными красителями. Наиболее интенсивно окрашивающиеся участки хромосом были названы гетерохроматиновыми, а слабо окрашивающиеся—.эухроматиновыми (рис. 43).[ . ]

На рисунке 34 показана ультраструктура интерфазного ядра. На нем видны плотные сплетения хроматина в нуклеоплазме, а также плазмодесмы, проходящие через поры клеточной оболочки.[ . ]

Структура хромосом. В интерфазе хроматин обычно выявляется по периферии ядра растительной клетки или в виде сетчатых тяжей в его внутреннем пространстве. В некоторые периоды он может терять свою компактность, разрыхляться, деконден-сироваться, становясь диффузным. В интерфазном ядре при неполном разрыхлении хромосом видны участки конденсированного хроматина. Степень уменьшения плотности хроматина в интерфазе отражает функциональное состояние этой структуры. Максимальная его конденсация приводит к формированию компактных образований, получивших название митотических хромосом. Вначале они относительно инертны и отличаются от хроматина прежде всего плотностью упаковки составляющих их элементов.[ . ]

На основании проведенных исследований митоз подразделяют на три периода: реорганизация профазы, при которой в интерфазном ядре происходят распад клеточных структур (ядрышка, ядерной оболочки) и синтез структурных элементов хромосом и митотического аппарата; деление и движение, при которых осуществляются метафаза и анафаза; реконструкция, при которой ■стадия телофазы завершается делением клетки — цитокинезом, или цитотомией.[ . ]

Эукариотические клетки одноклеточных и многоклеточных организмов вступают в процесс деления после ряда подготовительных этапов, происходящих в ядре и цитоплазме интерфазной клетки. Биологический смысл митоза заключается в равномерном распределении наследственного материала, содержащегося в хромосомах, между вновь возникающими клетками. Необходимым условием осуществления митоза является не только присутствие особых структурных единиц — хромосом, обладающих способностью к репликации, но и наличие митотического аппарата, обеспечивающего передвижение хромосом к полюсам клетки. Весь комплекс процессов, в результате которых из одной клетки образуются две новые, принято называть митотическим циклом. Следовательно, митотический цикл по времени длится от конца одного до начала другого деления клетки.[ . ]

Политенные хромосомы (от греч. poly — много и tenía — нити). Политенные хромосомы, отличающиеся исключительно крупными размерами, нередко обнаруживаются в интерфазных ядрах клеток слюнных желез двукрылых, реже — в ядрах растительных клеток. Они состоят из большого числа хроматид, нередко превышающего тысячу.[ . ]

При эндомитозе после репликации хромосомы вначале спира-лизуются, становясь отчетливо видимыми, а затем уже расходятся и деспирализуются внутри ядерной оболочки. В промежутке между делениями ядро выглядит интерфазным.[ . ]

Жизненный цикл любой клетки, как правило, слагается из двух фаз: периода покоя (интерфазы) и периода деления, в результате которого образуются две дочерние клетки. Следовательно, с помощью клеточного деления, которому предшествует деление ядра, осуществляется рост отдельных тканей, а также всего организма в целом. В период деления ядро претерпевает ряд сложных упорядоченных изменений, в процессе которых исчезают ядрышко и оболочка ядра, а хроматин конденсируется и образует дискретные, легко идентифицируемые палочковидные тельца, названные хромосомами, число которых для клеток каждого вида постоянно. Ядро неделящейся клетки называют интерфазным; в этот период обменные процессы в нем проходят наиболее интенсивно.[ . ]

А — клетка вне деления, во время иитерфазы-хромосомы в это время деконденсированы, деспирализованы, поэтому сами хромосомы не видны как индивидуально обособленные образования; хорошо различимы ядрышки. Б профаза митоза; клетка готовится к делению; хорошо видны хромосомы, каждая из которых состоит из двух хроматид. В — метафаза митоза; оболочка ядра растворяется; хромосомы располагаются в экваториальной плоскости клетки; появляются нити веретена, прикрепляющиеся к хромосомам. Е — цитокинез: образование оболочки между двумя дочерними клетками; ядра принимают интерфазный вид — как на А.[ . ]

Ссылка на основную публикацию
Хорошие витамины для поднятия иммунитета
Давайте подробнее разберем причины снижения иммунитета, способы его повышения, в том числе народные, и поговорим о профилактике для здорового организма....
Хлороформ наркоз
← Хлорофилл у бактерий Хлороформирование Энциклопедический словарь Брокгауза и Ефрона Хлороформ → Словник: Хаким — Ходоров. Источник: т. XXXVII (1903):...
Хлорпромазина гидрохлорид
Фармакологические свойства хлорпромазин — нейролептик группы алифатических производных фенотиазина. Оказывает выраженное антипсихотическое действие, устраняет психомоторное возбуждение, уменьшает чувство страха, агрессивность,...
Хорошие желчегонные таблетки
Желчегонные препараты активизируют выработку и отток желчи, минимизируют её вязкость. Лекарства назначают для устранения проявлений и предотвращения развития патологических процессов...
Adblock detector